PlanetJon

Tag Cloud

Welcome to PlanetJon

PlanetJon was originally established in 1999 and provided free multiplayer gaming servers and other video game related services. Now though, after those games faded away and spare time became limited, the website is devoted to my interest in all things space related - the planets, solar activity, the exploration of planet Mars, the solar system and beyond - and provides a collection of news and information from around the web.

Somewhere out there, in another galaxy, far, far, away, is a planet called Jon.

  • Carnival of Space #534

    7 Nov 2017 | 5:06 pm

    Carnival of Space #534 This week’s Carnival of Space is hosted by Allen Versfeld at his Urban Astronomer blog. Click here to read Carnival of Space #534. And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to carnivalofspace@gmail.com, and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address. The post Carnival of Space #534 appeared first on Universe Today.

    Read more...

  • Proxima Centauri has a Cold Dust Belt that Could Indicate Even More Planets

    7 Nov 2017 | 3:18 pm

    Proxima Centauri has a Cold Dust Belt that Could Indicate Even More Planets Proxima Centauri, in addition to being the closest star system to our own, is also the home of the closest exoplanet to Earth. The existence of this planet, Proxima b, was first announced in August of 2016 and then confirmed later that month. The news was met with a great deal of excitement, and a fair of skepticism, as numerous studies followed t were dedicated to determining if this planet could in fact be habitable. Another important question has been whether or not Proxima Centauri could have any more objects orbiting it. According to a recent study by an international team of astronomers, Proxima Centauri is also home to a belt of cold dust and debris that is similar to the Main Asteroid Belt and Kuiper Belt in our Solar System. The existence of this dusty belt could indicate the presence of more planets in this star system. The study, titled “ALMA Discovery of Dust Belts Around Proxima Centauri“, recently appeared online and is scheduled to appear in the Monthly Notices of the Astronomical Society. The study was led by Guillem Anglada from the Astrophysical Institute of Andalusia (CSIS), and included members from the Institute of Space Sciences (IEEC), the European Southern Observatory (ESO), the Joint ALMA Observatory, and multiple universities. For their study, the team relied on data obtained by the Atacama Large Millimeter/submillimter Array (ALMA) at the ALMA Observatory in Chile. These observations revealed the glow of a cold dust belt that is roughly 1 to 4 AUs[…]

    Read more...

  • They Just Began Casting the Giant Magellan Telescope’s 5th Mirror. What a Monster Job.

    7 Nov 2017 | 2:34 pm

    They Just Began Casting the Giant Magellan Telescope’s 5th Mirror. What a Monster Job. The fifth mirror for the Giant Magellan Telescope (GMT) is now being cast, according to an announcement from the Giant Magellan Telescope Organization (GMTO), the body behind the project. The GMT is a ground-breaking segmented telescope consisting of 7 gigantic mirrors, and is being built at the Las Campanas Observatory, in Atacama, Chile. The mirrors for the GMT are being cast at the Richard F. Caris Mirror Laboratory, at the University of Arizona. This lab is the world centre when it comes to building large mirrors for telescopes. But in a lab known for ground-breaking, precision manufacturing, the GMT’s mirrors are pushing the engineering to its limits. Seven separate mirrors, each the same size (8.4 meters,) will make up the GMT’s primary mirror. One mirror will be in the centre, and six will be arranged in a circle around it. Each one of these mirrors is a 20 ton glass behemoth, and each one is cast separately. Once the seven are manufactured (and one extra, just in case) they will be assembled at the observatory site. The result will be an optical, light-gathering surface almost 24.5 meters (80 ft.) in diameter. That is an enormous telescope, and it’s taking extremely precise engineering and manufacturing to build these mirrors. The glass for the mirrors is custom-manufactured, low-expansion glass from Japan. This glass comes as blocks, and each mirror requires exactly 17,481 kg of these glass blocks. A custom built furnace and mold heats the glass to 1165°C (2129°F) for several hours.[…]

    Read more...

  • New Study Says Enceladus has had an Internal Ocean for Billions of Years

    6 Nov 2017 | 7:03 pm

    New Study Says Enceladus has had an Internal Ocean for Billions of Years When the Cassini mission arrived in the Saturn system in 2004, it discovered something rather unexpected in Enceladus’ southern hemisphere. From hundreds of fissures located in the polar region, plumes of water and organic molecules were spotted periodically spewing forth. This was the first indication that Saturn’s moon may have an interior ocean caused by hydrothermal activity near the core-mantle boundary. According to a new study based on Cassini data, which it obtained before diving into Saturn’s atmosphere on September 15th, this activity may have been going on for some time. In fact, the study team concluded that if the moon’s core is porous enough, it could have generated enough heat to maintain an interior ocean for billions of years. This study is the most encouraging indication yet that the interior of Enceladus could support life. The study, titled “Powering prolonged hydrothermal activity inside Enceladus“, recently appeared in the journal Nature Astronomy. The study was led by Gaël Choblet, a researcher with the Planetary and Geodynamic Laboratory at the University of Nantes, and included members from NASA’s Jet Propulsion Laboratory, Charles University, and the Institute of Earth Sciences and the Geo- and Cosmochemistry Laboratory at the University of Heidelberg. Prior to the Cassini mission’s many flybys of Enceladus, scientists believed this moon’s surface was composed of solid ice. It was only after noticing the plume activity that they came to realize that it had water jets that extended all the way down to a warm-water ocean in its interior. From[…]

    Read more...

  • Cutting-Edge Astronomy Confirms Most Ancient Galaxy to Date

    6 Nov 2017 | 2:42 pm

    Cutting-Edge Astronomy Confirms Most Ancient Galaxy to Date Since the deployment of the Hubble Space Telescope, astronomers have been able to look deeper into the cosmic web than ever before. The farther they’ve looked, the deeper back in time they are able to see, and thus learn what the Universe looked like billions of years ago. With the deployment of other cutting-edge telescopes and observatories, scientists have been able to learn a great deal more about the history and evolution of the cosmos. Most recently, an international team of astronomers using the Gemini North Telescope in Hawaii were able to spot a spiral galaxy located 11 billion light years away. Thanks to a new technique that combined gravitational lensing and spectrography, they were able to see an object that existed just 2.6 billion years after the Big Bang. This makes this spiral galaxy, known as A1689B11, the oldest and most distant spiral galaxy spotted to date. The study which details the team’s findings, titled “The most ancient spiral galaxy: a 2.6-Gyr-old disk with a tranquil velocity field“, recently appeared in The Astrophysical Journal. The team consisted of members from the Swinburne University of Technology, the Australian Research Council Center of Excellence in All Sky Astrophysics in 3D (ASTRO 3D), the University of Lyon, Princeton University, and the Racah Institute of Physics at The Hebrew University in Jerusalem. Together, the team relied on the gravitational lensing technique to spot A1689B11. This technique has become a mainstay for astronomers, and involves using a large object (like a galaxy cluster) to[…]

    Read more...